Refine Your Search

Topic

Author

Search Results

Standard

L.E.D. Signal and Marking Lighting Devices

2015-03-24
HISTORICAL
J1889_201503
This SAE Recommended Practice applies to functions of motor vehicle signaling and marking lighting devices which use light emitting diodes (L.E.D.’s) as light sources. This report provides test methods, requirements, and guidelines applicable to the special characteristics of L.E.D. lighting devices. This Recommended Practice is in addition to those required for devices designed with incandescent light sources. This report is intended to be a guide to standard practice and is subject to change to reflect additional experience and technical advances.
Standard

Test Procedure for Battery Flame Retardant Venting Systems

2013-02-11
HISTORICAL
J1495_201302
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), Heavy-Duty, EV (electric vehicle) and RV (recreational vehicle) batteries to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery where an explosive mixture can be present. NOTE: At this time 2011, there is no known comparable ISO Standard.
Standard

Test Procedure for Battery Flame Retardant Venting Systems

2018-11-12
CURRENT
J1495_201811
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), heavy-duty, EV (electric vehicle), and RV (recreational vehicle) batteries, to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery under sustained overcharge conditions. NOTE: At this time, 2018, there is no known comparable ISO Standard.
Standard

SAE ELECTRIC VEHICLE CONDUCTIVE CHARGE COUPLER

1996-10-01
HISTORICAL
J1772_199610
This SAE Recommended Practice covers the general physical, electrical, and performance requirements for the electric vehicle conductive charging system and coupler for use in North America. The intent of the document is to define a common electric vehicle conductive charging system architecture and the functional requirements of the vehicle inlet and mating connector. Application and compatability requirements for the connector and vehicle inlet are stated herein.
Standard

SAE Electric Vehicle Conductive Charge Coupler

2001-11-27
HISTORICAL
J1772_200111
This SAE Recommended Practice covers the general physical, electrical, and performance requirements for the electric vehicle conductive charge system and coupler for use in North America. The intent of this document is to define a common electric vehicle conductive charging system architecture including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2023-03-24
WIP
J3016
This document describes [motor] vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis. It provides a taxonomy with detailed definitions for six levels of driving automation, ranging from no driving automation (Level 0) to full driving automation (Level 5), in the context of [motor] vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways:Level 0: No Driving AutomationLevel 1: Driver AssistanceLevel 2: Partial Driving AutomationLevel 3: Conditional Driving AutomationLevel 4: High Driving AutomationLevel 5: Full Driving AutomationThese level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on [motor] vehicles in a functionally consistent and coherent manner.
Standard

Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems

2014-01-16
HISTORICAL
J3016_201401
This Information Report provides a taxonomy for motor vehicle automation ranging in level from no automation to full automation. However, it provides detailed definitions only for the highest three levels of automation provided in the taxonomy (namely, conditional, high and full automation) in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on public roadways. These latter levels of advanced automation refer to cases in which the dynamic driving task is performed entirely by an automated driving system during a given driving mode or trip. Popular, media, and legislative references to “autonomous” or “self-driving” vehicles encompass some or all of these levels of automation. These definitions can be used to describe the automation of (1) on-road vehicles, (2) particular systems within those vehicles, and (3) the operation of those vehicles.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2010-01-15
HISTORICAL
J1772_201001
This SAE Recommended Practice covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2012-02-21
HISTORICAL
J1772_201202
This SAE Recommended Practice covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2018-06-15
HISTORICAL
J3016_201806
This SAE Recommended Practice describes motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis. It provides a taxonomy with detailed definitions for six levels of driving automation, ranging from no driving automation (level 0) to full driving automation (level 5), in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2012-10-15
HISTORICAL
J1772_201210
This SAE Recommended Practice covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2016-09-30
HISTORICAL
J3016_201609
This Recommended Practice provides a taxonomy for motor vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5). It provides detailed definitions for these six levels of driving automation in the context of motor vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways. These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on motor vehicles in a functionally consistent and coherent manner.
Standard

SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

2016-02-03
HISTORICAL
J1772_201602
This SAE Standard covers the general physical, electrical, functional and performance requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document defines a common EV/PHEV and supply equipment vehicle conductive charging method including operational requirements and the functional and dimensional requirements for the vehicle inlet and mating connector.
Standard

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles

2021-04-30
CURRENT
J3016_202104
This document describes [motor] vehicle driving automation systems that perform part or all of the dynamic driving task (DDT) on a sustained basis. It provides a taxonomy with detailed definitions for six levels of driving automation, ranging from no driving automation (Level 0) to full driving automation (Level 5), in the context of [motor] vehicles (hereafter also referred to as “vehicle” or “vehicles”) and their operation on roadways: Level 0: No Driving Automation Level 1: Driver Assistance Level 2: Partial Driving Automation Level 3: Conditional Driving Automation Level 4: High Driving Automation Level 5: Full Driving Automation These level definitions, along with additional supporting terms and definitions provided herein, can be used to describe the full range of driving automation features equipped on [motor] vehicles in a functionally consistent and coherent manner.
Standard

Test Procedure for Battery Flame Retardant Venting Systems

2012-08-06
HISTORICAL
J1495_201208
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), Heavy-Duty, EV (electric vehicle) and RV (recreational vehicle) batteries to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery where an explosive mixture can be present.
Standard

North American Charging System (NACS) for Electric Vehicles

2024-01-24
WIP
J3400
This Recommended Practice covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a connector, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
Standard

Road User Charging™ Set

2024-01-25
CURRENT
J3217/RS_202401
This Abstract Syntax Notation (ASN.1) file precisely specifies the structure of the data used to support implementation of SAE International Standard J3217/R. Using the ASN.1 specification, a compiler tool can be used to produce encodings as required by the encoding rules identified in the standard (SAE J3217/R messages are encoded with UPER encoding). Both this file and the SAE J2735 ASN.1 files are necessary to collectively implement the data exchanges described in SAE J3217/R. The combined library can be used by any application (along with the additional logic of that application) to exchange the data using interfaces conformant to J3217/R. SAE J3217/R specifies interface requirements and message exchanges for configuration and reporting in road use charging systems.
Standard

Liquid Leak Tightness Evaluation Methodology for EV Battery Packs Informational Report

2024-04-23
CURRENT
J3277_202404
This technical information report (IR) presents a methodology to evaluate battery pack liquid leak tightness attributes to be used in a production line to satisfy the functional requirement for IPX7, water ingress requirement, and no sustainable coolant leakage for coolant circuits. The Equivalent Channel Method is used as a suggested production leak tightness requirement for a given battery pack design that will correlate and assure that the battery pack meets or exceeds its functional requirement. Obtaining the specific geometry of the Equivalent Channel (EC) for a given battery pack is done analytically and empirically in consideration of the product design limitations. This document is a precursor to J3277-1, which will present the practices to qualify that product leak tightness is equal or better than the maximum allowed EC for that product using applicable and commercially available leak test technologies.
Standard

Brazed Double Wall Low-Carbon Steel Tubing

2017-10-25
CURRENT
J527_201710
This SAE Standard covers brazed double wall low-carbon steel tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a suitable quality for bending, flaring, beading, forming, and brazing.
Standard

NACS Electric Vehicle Coupler

2023-12-18
CURRENT
J3400_202312
This document covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a coupler, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
X